Steg: a deniably-encrypted block device

Leopold Samulis

26/11/2011

1 What is Steg / DM-Steg?

Steg is a specification for deniably-encrypted block devices
DM-Steg is an implementation of this specification for (GNU/)Linux

Steg works with substrates (devices containing ciphertext) to export plaintext-
containing block devices, known as aspects, to the user. Without having the
key(s), there is no way of determining how many aspects a substrate contains, or
if it contains any aspects at all. Aspects, being block devices, may also function
as substrates for the purpose of creating aspects-within-aspects. Steg imposes
no limits on the number of aspects within a substrate nor on the way in which
aspects are arranged. In order to prevent disk surface analysis from providing
useful information, aspects are able to migrate so that their physical footprints
change completely over time. This migration can occur for mounted aspects
without interrupting 1/O and allows mounted aspects to exchange physical re-
gions with aspects for which keys have not been entered. Steg does not require
special offsets and aspects may reside within any region of a block device or file.
Accordingly, Steg can also be used for steganographically hiding aspects within
files.

DM-Steg consists of a Linux kernel module for mounting Steg aspects, as well as
userland utilities for managing aspects and assisting the mounting process. The
code is currently alpha, but works very nicely on my PC.

This document aims to outline the Steg specification and also give an overview
of the workings of DM-Steg. Where this document fails to adequately define
Steg, the DM-Steg source code should be authoritative.

2 What is deniable encryption?

Encryption of stored data is now a well established practice. Many tools are avail-
able to allow operating systems to automatically encrypt files or block devices.
For Linux, dm-crypt provides many possibilities for block device encryption. This
class of encryption may be characterised by the following properties:

e To obtain the plaintext, both the ciphertext and the secret key are required

e No effort is made to hide the existence of ciphertext

As such, this form of encryption works well when an attacker has an ability to
obtain the ciphertext but has no ability to obtain the secret key. This is useful
for eg:

e Hardware theft (eg. laptops, USB sticks)
e Remote attacks where the data is not currently mounted
e Hardware seizure by law-abiding government forces (in most jurisdictions)

If, however, the adversary is able to apply force in order to obtain the secret
key (rubber-hose cryptanalysis), the overall security of the system is weakened
considerably. Such adversaries may include:

e 'Private investigators' hired by criminal corporations (eg. BP, TEPCO)
e Government forces acting without regard to the law
e Courts ordering disclosure in jurisdictions with the required legislation

In the UK, part 3 of the RIP act came into force in 2008 and allows police to
force suspects to decrypt any encrypted data that has been seized. Failure to
provide plaintext may result in up to 5 years imprisonment. Put simply, forgetting
your password can now be a criminal offense.

Deniable encryption presents a technical solution to the above problem. The
core properties of deniable encryption are the inability to prove that:

e A suspected ciphertext is not simply random data
e A user has disclosed all of the keys for a known ciphertext

In the first case, it should be impossible to prove beyond all reasonable doubt
that a suspected ciphertext is indeed a ciphertext. Potentially, this could be an
effective legal defence but the user is still vulnerable to rubber-hose cryptanalysis.
Rather than denying the existence of a ciphertext, the second method allows a
given ciphertext to be decrypted with any number of keys. There is therefore
no way of knowing if the user has granted access to all the plaintexts or merely
a select subset. A clever user could divulge different keys at different stages of
interrogation so as to give the illusion of complete disclosure.

3 Why Steg?

There are few software solutions offering deniable encryption at the present. The
main contenders are:

Truecrypt: a popular disk encryption package for Windows, Linux, and Mac
OS. Truecrypt provides high speeds, strong encryption, and some measure of
deniability. On the downside, Truecrypt is distributed under a dubious (non-OSI-
approved) license and its deniability support is rigid and limited.

Bestcrypt: another popular encryption package for Windows and Linux that
allows multiple hidden volumes to reside within a single container. Unfortunately,
Bestcrypt is neither free nor open source and requires all hidden volumes to be
loaded before any are written to.

Rubberhose: a now defunct free and open source deniable encryption system
for Linux 2.2. Rubberhose, like Bestcrypt, also required that all hidden volumes
within a container be loaded before any are written to. This approach forces
the user to enter sensitive passwords in the course of normal operation and risk
accidental disclosure.

As all of the then-current offerings had serious shortcomings, the writing of Steg
was justified.

4 The Steg specification

4.1 Basic concepts

When creating an aspect, Steg divides a given substrate into equal sized units
called blocks, each aligned on a multiple of its own size. Blocks are at least
64 KB (although usually much larger) and are powers of 2 in size. Blocks
may be scattered around a substrate such that their physical locations bare no
resemblance to their logical locations. A block may be one of the following:

e The free block: not a block per se, but a blank region used for migration
of an aspects’ other blocks (shuffling).

e The header block: the first block accessed at load time and contains data
required to initialise the aspect and decode the data blocks.

e Data blocks: these blocks contain the data for the block device exported
to the user.

Blocks are subdivided into atoms - units of atomic access. Atoms are at least
512 bytes (one sector) but may be larger powers of 2. Like blocks, atoms appear
in three different varieties:

e The header atom: 512 bytes, padded up to atom size (if necessary) with
random data. Always at offset zero within the header block and required
to load the rest of the aspect.

e Meta atoms: appearing only in the header block, meta atoms store meta
data required for accessing an aspect.

e Data atoms: appearing only in data blocks, data atoms store the data of
the block device exported to the user.

4.2 SXTS

Traditionally, block device encryption software has used a single encryption key
for the entire device and employed sector-specific initial vectors (IVs) to work
around the otherwise-attendant security vulnerabilities. Steg takes a different
approach and uses a secure hashing function, SHA-256, to generate unique keys
for each atom in an aspect. This approach is more complex but offers better
security.

The current gold standard in narrow-block data encryption is the combination
of the AES block cipher with the XTS block cipher mode. XTS divides the
given key into Key; and Key,, where Key = Key||Keys. Key; is used to
encrypt a given initial vector (V) to give an initial tweak value. The plaintext
is then XORed with the tweak value, encrypted using Keyy, and re-XORed with
the tweak value. The tweak value is then changed each round by a fixed field
multiplication. Confusingly, XTS is described using the length of the full key.
This means that AES-256-XTS actually uses 128-bit AES.

Key,

olj Plaintext
IV—>{ AES-128 X .

l

AES-128 [«——Key;

l

—)@

Ciphertext
AES-256-XTS

As Steg uses SHA-256 to generate unique keys for each atom, the initial tweak
generation of XTS is superfluous. As such, Steg uses SXTS, a Shortened /
Simplified version of XTS, in which Key, is used as the initial tweak. The rest
of XTS's operation is unchanged. As AES-192 and AES-256 have significant
weaknesses in their key schedules, Steg uses AES-128. The resultant combina-
tion of AES-128 and SXTS, known as AES-256-SXTS, is the sole cipher used
throughout Steg. For systems without SXTS support, AES-256-SXTS may be
emulated using AES-256-XTS (see DM-Steg source code).

olj Plaintext
Key» & ¥,

l

AES-128 <«——Key;

l

—)@

Ciphertext
AES-256-SXTS

4.3 Accessing data within an aspect

Every data block in Steg has an associated 32-byte 'block keyfrag’, a key unique
to that block. Additionally, every atom's offset within its block corresponds to
a 32-byte 'atom keyfrag’, another unique key. An aspect therefore has as many
block keyfrags as it has header and data blocks, and as many atom keyfrags as
it has atoms in each block. Atoms may be thought of as residing on a 2D grid,
with block number on one axis and atom number on the other. To derive the key
for a particular data atom, the atom keyfrag is appended to the block keyfrag
and the SHA-256 hash of the resultant 64 bytes taken. The resultant 256-bit
key is used to decrypt the atom's ciphertext.

Block keyfrag Atom keyfrag

Y Y
SHA-256

\
Ciphertext —{ SXTS — Plaintext

The physical location of each block is contained within the first 8 bytes of the
block’s keyfrag. This unit may be considered as a 64-bit unsigned integer and,
like all integers within Steg, is little-endian. As each block is aligned on a multiple
of its own size, the lower bits of this unit are not used for address calculation and
serve purely for key generation. For example, for an aspect with 64 KB blocks,
the least significant 16 bits of the block keyfrag's first 8 bytes would be read as
zero, while the upper 48 bits would describe the block’s physical offset within
the substrate. To determine the physical offset of an atom, it's offset within its
block is added to the physical address of its block.

8 16 24 32

9{{;85 Randomised

Steg's method of data atom key generation has the following advantages:

e Atom keys are unique, and unrelated to other atom keys.

7

e Compromise of an atom key does not compromise the parent keyfrags
e Moving a block changes the keys of all its atoms

Meta atoms reside within the header block and their physical addresses may be
calculated in the same manner as for data atoms, using the header block keyfrag.
Key calculation is more complex for meta atoms and uses extra data located in
the last 32 bytes of the on-disk meta atom (the tail). First, one iteration of SHA-
256 is performed on the 192-bit (24 byte) hash in the tail (extension implicitly
performed as per the SHA-256 specification). A second iteration of SHA-256
is then performed on 64 bytes of data obtained by appending the atom keyfrag
to the block keyfrag. The hash is then finalised and used as a key by which to
decrypt the meta atom's ciphertext.

The plaintext is fed to a SHA-512 hash (extension implicitly performed as per
the SHA-512 specification), followed by a single 128 byte block formed by con-
catenating a 56 byte salt (contained in the aspect’s header atom), the 8-byte
unit from the meta atom tail ('Rnd’), the block keyfrag, and the atom keyfrag.
The first 24 bytes (192 bits) of the finalised hash is then compared to the hash
stored in the meta atom tail. If the hashes match, the atom is deemed to be
Intact.

0 end - 32 end-8 end
Ciphertext Hash Rnd
SHA-256 |<
Keyfrags
\
SXTS |«
7 \

Hash check <

Plaintext T
Salt

To encrypt a meta atom, 'Rnd’ is randomised and a hash is calculated as described
above. The hash, block keyfrag, and atom keyfrag are then used to calculate a
key which is used to encrypt the plaintext. The ciphertext, hash, and 'Rnd’ are
then concatenated to form a full atom, which is written to the substrate at the
appropriate location.

The meta atom encryption scheme has the following advantages:

e The whole of an atom's ciphertext changes each write, even if the plaintext
does not

e Alteration of the ciphertext (malicious or otherwise) can be detected

e Even if an attacker knows the atom's plaintext, it's ciphertext and tail
remain a mystery

4.4 Aspect loading

The header atom must be located and loaded before the rest of an aspect can be
loaded. As a header atom can reside at any location, Steg prioritises locations in
order of alignment, with the most aligned address being taken as zero. Amongst
equally aligned address, lower addresses are prioritised. For a 1 MB substrate the
order would be: 0x0, 0x80000, 0x40000, 0xc0000, 0x20000, 0x60000, 0xa0000,
and so on. This is clearer when all sixteen of the potential block addresses within
the 1 MB substrate are expressed in binary, highest priority first:

0000 0000 0000 0000 0000
1000 0000 0000 0000 0000
0100 0000 0000 0000 0000
1100 0000 0000 0000 0000
0010 0000 0000 0000 0000
0110 0000 0000 0000 0000
1010 0000 0000 0000 0000
1110 0000 0000 0000 0000
0001 0000 0000 0000 0000
0011 0000 0000 0000 0000
0101 0000 0000 0000 0000
0111 0000 0000 0000 0000
1001 0000 0000 0000 0000
1011 0000 0000 0000 0000
1101 0000 0000 0000 0000
1111 0000 0000 0000 0000

9

For each address, one sector (512 bytes) is read in. The SHA-256 sum of the
latter 448 bytes is then taken and is XORed onto the first 32 bytes of the sector.
The first 64 bytes of the sector is then put through the Bunny (see below), in
calculate mode, which returns another 64 bytes of data. The SHA-256 sum of
the returned 64 bytes is taken and used as a key with which to decrypt the latter
448 bytes of the sector. If the SHA-256 sum of the first 416 bytes of the plaintext
matches the hash stored in the last 32 bytes of the plaintext, then the plaintext
is a valid header. This encryption regime ensures:

e Any corruption of the first 512 bytes of the header atom renders the
whole atom indifferentiable from pseudorandom data. Partial recovery of
a deleted header is impossible.

e Any deliberate alterations to the ciphertext are detected

e To an attacker without the key, the header atom appears to be pseudoran-
dom data

After the header has been successfully decrypted, the atom keyfrags are loaded.
These are stored in meta atoms within the header block at an offset specified
in the header atom. The atom keyfrags should be stored in the header block
in such a way that one of the meta atoms is self-referential, ie. it contains the
atom keyfrag required to load itself. This meta atom should also contain the
atom keyfrags required to load the meta atoms before and after it. The atom
keyfrag for the self-referential meta atom is stored in the header and is used to
bootstrap the rest of the atom keyfrags.

After the atom keyfrags have been loaded, the block keyfrags are loaded. These
are also stored in meta atoms within the header block at an offset specified in
the header atom.

Finally, if shuffling is enabled, the journal atom is loaded and any incomplete
shuffles rolled back (see below).

4.5 The Bunny

As Steg requires no special addresses and aspects may occupy any region of a
substrate, decryption of many potential header atoms may have to be attempted.
The header decryption algorithm was therefore designed with the following prop-
erties in mind:

10

e Long precomputation time
e Short per-atom decryption time
e Resistance to precomputed table attacks (rainbow tables)

The usual method for defeating rainbow tables is to combine the user-supplied
passphrase with a salt before performing a time-intensive hashing. Unfortunately,
Steg may require multiple ciphertexts to be evaluated, and the salting approach
would result in an overall time proportional to the number of ciphertexts that
must be evaluated. Key derivation functions such as PBKDF2 can be used but
are also unsuitable for Steg for two reasons:

e Small working set lends itself to dedicated cracking hardware
e Key expansion rate slower than hard drive speeds makes precomputation
advantageous

To meet the design requirements, a novel key expansion function was designed.
This algorithm was designed to fit well with the capabilities of CPUs/GPUs and
not lend itself well to faster execution on simplified hardware. The first step in
the Steg key expansion algorithm is a multi-round hashing function, designed to
protect the user’'s passphrase if the attacker were to discover the hash:

To = SHA-256(Salt || SHA-256(passphrase))
T, = SHA-256(T, 1 || SHA-256(passphrase))
Final hash = T8192

The passphrase hash is then used to create a large amount of pseudorandom
data. The total of the expanded data created by the Bunny function is known as
the 'box’. The box is made up of one or many 'sub-boxes’, each of which may
be prepared independently from the others. Each sub-box in turn consists of at
least 21° entries of 64 bytes each, which are the working units for the Bunny state
machine. Security levels are numbered from 0 upwards. Each level increment
doubles both the number and size of the sub-boxes. Steg defines no upper
limit and higher levels will be appropriate as faster hardware becomes available.
When loading an aspect for which the Bunny level is not known, Steg may
precalculate Bunny data for all levels between 0 and a default maximum, then
test each potential header at every level. As each level increment increases the
resource requirements by roughly 4 times, the cumulative memory and processing
requirements for testing all levels below the maximum level should total no more
than 50% of the requirements for testing at the maximum level only.

11

Level | Sub-boxes | Sub-box size | Box size | Box entries
0 1 4 MB 4 MB 216
1 2 38 MB 16 MB 218
2 4 16 MB 64 MB 220
3 8 32 MB 256 MB 2%

Initially, each sub-box is filled with zeros. The sub-box is then divided into
chunks of 4 KB and AES-256-SXTS used to encrypt each chunk. The key for
each encryption operation is derived by XORing a 128-bit tweak value onto the
upper and lower halves of the 256-bit passphrase hash. The first 8 bytes of the
tweak is the size of the sub-box, in bytes. The next 4 bytes of the tweak is the
sub-box number, starting from zero. The final 4 bytes of the tweak is the current
chunk number, starting from zero within each sub-box.

0 8 12 16
Sub-box size Sub-box | Chunk

chunk key = passphrase hash & (tweak || tweak)

After pseudorandomising the sub-box, the Bunny state machine is introduced
and serves to further mix the data by 'hopping’ around inside the sub-box. The
Bunny has a 64-byte internal state (initially zero) and an 8-byte CRC. Starting
at the first entry within its sub-box, the Bunny XORs the target entry onto its
internal state. It then XORs the new internal state back onto the target entry.
The CRC is then calculated by treating the state as containing eight 64-bit
unsigned integers, multiplying them together, then multiplying the result by the
hop, numbered from 1. The most significant bits of the CRC then describe the
number of the next target entry.

12

number of hops = 2(18 + level).

target = 0;

state = 0;

hop = 1,

for each hop {
state = state @ *target;
*target = state @ *target;
crc = 1;
for each u_int64 t in state {

crc = crc X u_intb4 t;

}

crc = crc X hop
target = crc » (64 - sub-box bits);

To decrypt a header atom, the Bunny is operated in calculation mode. Calcu-
lation mode differs from precalculation mode in four ways. Firstly, instead of
hopping around inside sub-boxes, the Bunny is given run of the full box. Sec-
ondly, the box contents are not modified during operation. Thirdly, the number
of hops is much lower. Fourthly, the state is provided by the potential header
atom rather than being set to zero. After performing the requisite number of
hops, the current state is returned:

number of hops = 2(14 + 2 x level).

target = 0;
state = <read from header>;
hop = 1;

for each hop {
state = state @ *target;
crc = 1;
for each u_int64 t in state {
crc =crc X u_int64_t;
}

crc = crc X hop
target = crc » (64 - box bits);

}

return state;

Operating the Bunny in calculation mode serves to check the integrity of the
Bunny data and ensures that the whole dataset has either been loaded from

13

disk, or generated in situ. Either approach will slow down an attacker enough to
prevent aspects with reasonably strong passwords from being discovered.

4.6 Shuffling

As stated previously, an aspect consists of a free block, a header block, and
one or more data blocks. Shuffling is the process by which the contents of
the header block or a data block are re-written onto the free block. When the
process is complete, the source block is then marked as free and the process
may continue. When a data block is being shuffled, the journal atom in the
header block is updated before and after the meta atom containing the block
keyfrag is updated. This ensures that power loss during a shuffle will not corrupt
the aspect’'s meta data, or the user’'s data. When shuffling a header atom, no
journalling is performed. Instead the 'sequence’ entry in the header is set such
that Steg may determine which header to use when loading an aspect.

As outlined above, header blocks should preferentially be stored at aligned offsets
so that they may be located rapidly at load time. Additionally, transparent
aspects (see below) require preservation of alignment within their data blocks.
To allow shuffling to proceed without de-aligning any blocks, Steg internally
organises block into a 'pyramid’, according to their alignment. The free block,
which should always be the most aligned, initially sits on the top layer of the
pyramid. For an aspect with 64 KB blocks occupying the whole of a 1 MB
substrate, the pyramid initially appears as follows:

o

D
D|D
[D[p|p|D

el vl
>}

D[D[D]

The first shuffle occurs when the header block is promoted into the space marked
by the free block. The second shuffle can then occur as a randomly-selected
data block from the 3rd level is promoted into the new free area. The shuffling
continues as the free block moves down the pyramid, completing the desired
number of shuffles on each layer. When finished, it begins ascending back to the
top of the pyramid. So that only blocks that have already been promoted are
de-promoted during free block ascension, Steg keeps a list of promoted blocks in
the journal atom. The process is shown here, with promoted blocks in bold:

14

H
H D D
D[D DD D D
[D|p[D[D] [D|p[D|D]| [D[p[D[D] [D|p[D D]
D D D D
DD D[D D[D D[D
| |p|p] [D|p| [D] | Iplp|p] [p|p|D]| |
3 ;
D D H
D D D [D DD
[D|p[D[D] [D|p[D|D]| [D[p[D[D] [D|p[D D]

When a block is shuffled, the bits in the new block keyfrag that are not used
for addressing are randomised. Therefore, atoms in the new block have different
keys to atoms in the old block and, over time, even if the contents of an aspect
do not change, it's ciphertext does.

When creating a new header block, Steg should first write the atom keyfrags,
block keyfrags and a clean journal. After they have been committed to disk,
Steg may then write a new header atom, activating the new header block. The
previous header will not be loaded by Steg, due to its less preferred sequence
number, and will be overwritten the next time a shuffle occurs.

4.7 Transparent Aspects

Transparent aspects are aspects in which data atom encryption (but not header
atom or meta atom encryption) is disabled, by use of the 'encryption’ setting in
the header atom. Transparent aspects should be created such that the alignment
order amongst exported (user-visible) addresses mirrors that of their correspond-
ing physical addresses. The envisaged use of a transparent aspects is as a layer
that may be placed over the whole of a substrate so as to export another sub-
strate of approximately the same size as the original. This allows encrypted
aspects created within the transparent aspect to be rearranged on disk via the
shuffling of the transparent aspect, even if they are not known to the system.

When creating a transparent aspect, its passphrase hash is randomised and does
not need to be known to the user: it can instead be stored in memory by the

15

aspect management utility. When a user creates an aspect within the transparent
aspect, the transparent aspect’s passphrase hash will be stored in the new aspect’s
header atom. For loading an encrypted aspect within a transparent aspect, the
process occurs as follows:

Load the encrypted aspect’s header atom from the original substrate
Load the transparent aspect’'s header atom from the original substrate
Load the transparent aspect

Re-locate and load the encrypted aspect’s header atom from within the
transparent aspect

5. Load the encrypted aspect

el

Steg supports the use of transparent aspects within transparent aspects, and
places no limits on the number of transparent aspects an encrypted aspect may
ultimately reside within.

Transparent aspects do not compromise the deniability of Steg since, to an at-

tacker without a key for an encrypted aspect within the transparent aspect, the
transparent aspect’'s meta data would appear simply as random data.

4.8 Usage examples

Example usages of the Steg primitives and their advantages/disadvantages are
shown here:

A single encrypted aspect spanning the whole of a substrate:

e Simplest use of Steg
e Strong encryption but very limited deniability

Multiple encrypted aspects spanning the whole of a substrate:

e Hidden aspects can be explained as free space
e Disk surface analysis may suggest otherwise

Multiple encrypted aspects within a transparent aspect:

16

e Hidden aspects can be explained as free space
e Probably very hard to prove otherwise

An encrypted aspect hidden at the end of an encrypted aspect’s exported sub-
strate:

e Nigh impossible to prove the hidden aspect

e Extra encryption/decryption would decrease performance

e Hidden aspect would be silently destroyed if the known aspect's filesystem
was filled up

Although not part of the Steg specification, overlapping aspects are implicitly
allowed and may be used to create an additional aspect within the data region
of another aspect. In practice, this can allow an aspect to be hidden in the
free space beyond the end of a filesystem. As the contents of a freshly created
encrypted aspect appear random, the internal aspect would be fully deniable.

An encrypted aspect residing within the data blocks of another encrypted aspect,
both inside a transparent aspect:

e Nigh impossible to prove the hidden aspect

e Shuffling must be disabled for the non-hidden aspect

e Hidden aspect would be silently destroyed if the known aspect'’s filesystem
was filled up

Steg may also be used to hide data in a file. Steg requires multiple perfectly
aligned regions of at least 64 KB each. If the file is stored inside a shuffled
aspect, disk surface analysis should yield very little information.

Finally, although some uses of Steg may be fully deniable, users should be aware

of the ever-present threat of the operating system leaking meta data and giving
away the existence of a hidden filesystem.

17

5 DM-Steg

DM-Steg is the current implementation of the Steg specification. The userland
tools are written portably and should work in any POSIX environment, while
the kernel module is written specifically for Linux. All of DM-Steg should be
considered alpha and should not yet be trusted with critical data. The current
release of DM-Steg is dmsteg-0.9.tar.gz and its SHA-256 sum is:

0el166edbb104c316e0ae8ec9929a194563f0f78149b0862324ce742f2dbe86fb

5.1 Stegdisk

Stegdisk is the utility for aspect management. Stegdisk can erase substrates,
create encrypted and transparent aspects, and import/export aspect contents
from/to image files. Creation and editing of aspects-within-aspects is fully sup-
ported via the 'open’ command.

Stegdisk allows substrates to be divided into 'regions’ so that aspects can be
created only within a selected part of a substrate, eg. for hiding aspects within
files. Regions also facilitate the creation of overlapping aspects (see the 'steal’
command).

For performance reasons, Stegdisk chooses a default block size based on the
size of the substrate, usually in the order of a few megabytes. Also for perfor-
mance reasons, the default atom size is 4 KB, equivalent to one page on most
architectures. Requests sent to the kernel module appear to always consist of
one or more aligned pages, and aspects with page-sized atoms exhibit a large
performance increase over aspects with 512 byte atoms.

Stegdisk defaults to creation of encrypted aspects with bunny level 1 and trans-
parent aspects with Bunny level 0. When loading aspects, Stegdisk will by default
search for aspects at levels 0 and 1.

5.2 Kernel components

The Linux kernel components consist of the DM-Steg device mapper module,
the SXTS module, and miscellaneous support files.

18

The DM-Steg module is written for the device mapper infrastructure and provides
a layer that can be placed over a substrate so as to export an aspect. The kernel
module works independently with each aspect and knows nothing about the
relationships between aspects. Shuffling is triggered by device mapper messages
sent from userland.

5.3 The Steg Daemon

The Steg daemon, stegd, keeps a record of live aspects and sends out periodic
shuffle messages. stegd also invokes the Bunny to calculate new keys when the
header block must be moved. To stop sensitive data being leaked, mlockall() is
used. Also, like all DM-Steg userland tools, stegd zeros memory before freeing
it. stegd listens on /var/run/stegd for incoming connections from stegsetup and
stegctl (see below).

As DM-Steg is currently alpha, automatic shuffling is disabled by default. To
change this, use stegctl.

5.4 stegctl

stegctl sends messages to stegd via the /var/run/stegd socket and prints the re-
ply. stegctl is used by stegmount and stegumount and can also be used for turning
on and off automatic shuffling ('stegctl rate 0/1'), and for manually triggering
individual shuffles ('stegctl shuffle’). See stegd.c for a full list of commands.

5.5 Mounting tools

To instruct the kernel module to setup an aspect, the stegsetup utility is used.
It works as follows:

Prompt the user for a passphrase

Perform the Bunny precomputation

Scan the substrate for headers

Test-load the aspect and, if necessary, clean its journal
Ask stegd for an unused /dev/mapper/stegX device

AR

19

6. Instruct the device-mapper kernel components to set up the aspect
7. If successful, register the aspect with stegd

stegsetup can handle nested aspects and will set up as many /dev/mapper/stegX
devices as required.

stegmount is a wrapper for stegsetup that tries to mount the innermost aspect’s
filesystem at a provided mount point.

stegumount unmounts a filesystem, unloads an aspect, and removes any unused
supporting aspects.

6 Benchmarks

All benchmarks were taken on my system with 4 GB RAM, a 1.5 TB Spinpoint
F2 EcoGreen SATA HDD, running an ancient Gentoo install with:

Linux shakti 3.2.0-rc3SHAKTI #1 SMP Thu Nov 24 17:02:53 GMT 2011 x86 64
Intel(R) Core(TM)2 CPU 4400 @ 2.00GHz Genuinelntel GNU/Linux

To test whole-device read performance, 'time cp <device> /dev/null’ was ex-
ecuted. To test the corresponding write performance, 'cp /dev/zero <device>
; sync’ was timed. The substrates used for benchmarking were /dev/sdal, an
aligned 32 GB partition, and /dev/ram0, a 2 GB ramdisk with 4 KB blocks.
Whole-device reads and writes were performed on the substrates themselves, on
encrypted aspects within the substrates, and on encrypted aspects within trans-
parent aspects within the substrates. All aspects were of the maximum possible
size and used 4 KB atoms. The numbers reported are in MB/s:

Device Read Write
/dev/sdal 110 111
Block size: 4MB |32MB |4 MB|32MB
sdal(enc) 88 106 73 81

sdal(trans(enc)) | 88 107 73 79

Device Read Write
/dev/ram0 691 578
Block size: 1MB|32MB |1MB|32MB
ramO(enc) 121 121 148 148

ramO(trans(enc)) | 129 127 141 141

20

Kernel compiles were performed to test real-world performance. A ReiserFS
filesystem was created on /dev/sdal, the kernel source tree was copied across,
caches were dropped, and a 'time make' was performed. The same procedure
was then performed inside an encrypted aspect using 4 MB blocks and taking
up the whole of /dev/sdal, and the finally inside an encrypted aspect inside a
transparent aspect on /dev/sdal, both of maximum size and both using 4 MB
blocks. The three compiles took 930, 938, and 933 seconds, respectively, giving
a maximum performance penalty of less than 1%.

7 Credits

Steg and DM-Steg were developed by Leopold Samulis (anagon@gmail.com) from
2010-2011.

With infinite gratitude to Mj, for teaching me crypto.

8 Future Work

| have taken Steg/DM-Steg as far as | want and any further improvements will
be left to the OSS/free software community at large. Aside from bug fixing there
are a handful of things that could really use doing, such as:

Proper idle detect for stegd

Optimizing the kernel code

Wear levelling for the journal atom

Wide-block encryption with authentication for data atoms
GRUB support!

If you like what you see and are interested in contributing or taking over leadership
of this project, please contact me at anagon@gmail.com.

21

9 License

The Steg specification should be considered free and unencumbered. This doc-
ument and it's source .tex file are hereby released into the public domain.

DM-Steg is hereby released in its entirety into the public domain. This means
you may do with DM-Steg whatever you please, wherever you please, whenever
you please, inasmuch as you please, for the rest of eternity. Having said that, |
would kindly ask that you:

1. Release all modified and derived works into the public domain
2. Do not deviate from the specification without very good reason
3. Give credit where credit is due

Also, please see the below boilerplate:

THIS SOFTWARE IS PROVIDED BY LEOPOLD SAMULIS "AS IS AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
LEOPOLD SAMULIS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE. LEOPOLD SAMULIS AND CONTRIBUTORS SHALL
ALSO NOT BE LIABLE IF USE, POSSESSION, OR TRANSMISSION OF THIS
SOFTWARE GETS YOU IN TROUBLE WITH WHICHEVER LEGAL SYSTEM
YOU LIVE UNDER.

22

